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Abstract—The cell-type diversity is to a large degree driven by transcription regulation, i.e., enhancers. It has been recently shown that
in high-level eukaryotes enhancers rarely work alone, instead they collaborate by forming clusters of cis-regulatory modules (CRMs).
Even if the binding of transcription factors is sequence-specific, the identification of functionally similar enhancers is very difficult. A
similarity measure to detect related regulatory sequences is crucial to understand functional correlation between two enhancers. This
will allow large-scale analyses, clustering and genome-wide classifications. In this paper we present Under,, a parameter-free
alignment-free statistic based on variable-length words. As opposed to traditional alignment-free methods, which are based on fixed-
length patterns or, in other words, tied to a fixed resolution, our statistic is built upon variable-length words, and thus multiple resolutions
are allowed. This will capture the great variability of lengths of CRMs. We evaluate several alignment-free statistics on simulated data
and real ChlP-seq sequences. The new statistic is highly successful in discriminating functionally related enhancers and, in almost all
experiments, it outperforms fixed-resolution methods. Finally, experiments on mouse enhancers show that Under; can separate
enhancers active in different tissues. Availability: http://www.dei.unipd.it/~ciompin/main/UnderlICRMS.html

Index Terms—Alignment-free statistics, pattern discovery, regulatory sequences comparison

1 INTRODUCTION

NE of the fundamental questions in bioinformatics is

how to measure the similarity between biological
sequences. When dealing with protein sequences or coding
genes, this is probably one of the most studied problems, as
it relates to the identification of homologous sequences. The
use of tools like BLAST [1] to assess the degree of similarity
between two sequences is nowadays a standard procedure.

In this paper we focus on the same question, but for regu-
latory sequences like promoters or enhancers of genes. The
similarity between coding sequences has been widely used
to estimate functional correlations. For regulatory sequen-
ces, it is a general belief that similar binding site contents
are expected to drive similar expression patterns.

With the advent of ChIP-seq technologies, large collec-
tions of regulatory sequences are now available. One of the
most important steps in the analysis of ChIP-seq data is
the identification of enhancing sequences that regulate the
same cell-type.

There are cases where traditional alignment based meth-
ods cannot be applied, for example, when the sequences
being compared do not share any statistical significant
alignment. This is the case when the sequences come from

o M. Comin is with the Department of Information Engineering, University
of Padova, via Gradenigo 6/A, 35131 Padova, Italy.
E-mail: comin@dei.unipd.it.

o D. Verzotto is with the Department of Computational and Systems
Biology, Genome Institute of Singapore, Singapore 138672.
E-mail: verzottod@gis.a-star.edu.sg.

Manuscript received 28 Dec. 2013; accepted 24 Jan. 2014. Date of publica-
tion 18 Feb. 2014; date of current version 4 Aug. 2014.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TCBB.2014.2306830

distant related organisms, or they are functionally related
but not orthologous.

Moreover transcription factors binding sites often occur
in clusters, also called cis-regulatory modules (CRMs).
These modules play a key role in the regulation of the tran-
scription process in human [28] as well as in Drosophila [15].
In addition, the position and orientation of binding sites in
CRMs sharing the same cell-specific function may vary,
making an alignment of them often impossible.

Lastly, enhancers in high-level eukaryotes rarely work
alone; instead, they usually collaborate by forming closely
located CRM clusters. It has been recently shown that dur-
ing embryonic development every gene is regulated on
average by three different transcription factors [7]. How-
ever, the presence of different enhancer clusters has not
been already fully explored by current motif-finding tools.
Moreover, the presence of multiple binding sites can make
the localization of each enhancer very difficult. For these
reasons biologists need first to screen ChIP-seq data sets to
select cell-specific regulatory sequences, which are based on
“common” contents.

The use of alignment-free methods for comparing
sequences has been proved useful for a variety of different
tasks. See Vinga and Almeida for a comprehensive review
[26]. The idea to describe a sequence by its word content fits
very well the model of CRMs, where we assume that a simi-
lar function is driven by the binding site content of different
enhancers. Several alignment-free methods have been
devised for this problem [14], [18], [20].

Almost all alignment-free method are based on statistics
of words with a fixed-length k. The problem with this meth-
ods is that the performance depends dramatically on the
choice of the resolution % [22]. For example in the analysis
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of enhancers using simulated data [14], [20], the best per-
forming k is usually equal to the length of the implanted
enhancer. In real cases, where it is not possible to know the
enhancer length in advance, the choice of £ is critical. More-
over, in the presence of several CRMs, it is simply not feasi-
ble to select the k that best fits enhancers of different
lengths. For these reasons, in this paper we present a param-
eter-free alignment-free method, called Under;, based on
variable-length words. We will define a similarity measure
using variable-length words along with their statistical and
syntactical properties, so that “uninformative” words will
be discarded.

Another contribution is the definition of a more realistic
variant of the patter transfer model, introduced in [21] to
construct synthetic regulatory sequences and mimic hori-
zontal gene transfer. We thus define the pattern transfer
model revised, in which the exchange of genetic material
includes reverse, complement, and reverse-complement
patterns, as well as variable-length regions.

The paper is organized as follows. In Section 2 we review
alignment-free methods and their applications. In Section 3
we present our contributions, the Under, statistic and the
pattern transfer model revised. We test the performance of
several alignment-free measures in both synthetic and real
regulatory sequences in Section 4. Conclusions and future
work are discussed in Section 5.

2 PREVIOUS WORK

Historically, one of the first papers that introduces an align-
ment-free method is due to Blaisdell in 1986 [5]. He propose
a statistic called Ds, to study the correlation between two
sequences. The initial purpose was to speed up database
searches, where alignment-based methods were too slow.
The D, similarity is the correlation between the number of
occurrences of all k-mers appearing in two sequences. Let A
and B be two sequences from an alphabet >. The value A4,
is the number of times w appears in A, with possible over-
laps. Then the D, statistic is

D2 = Z AuzBu/~

wesk

This is the inner product of the word vectors A,, and B,,
each one representing the number of occurrences of words
of length £, i.e., k-mers, in the two sequences. However, it
was shown by Lippert et al. [19] that the D, statistic can be
biased by the stochastic noise in each sequence. To address
this issue another popular statistic, called Dj, was intro-
duced in [18]. This measure was proposed to standardize
the D in the following manner:

D — Dy — E(D2)
: V(Dy)

where E(D;) and V(D,) are the expectation and the
standard deviation of D,, respectively. Although the Dj
similarity improves Dy, it is still dominated by the specific
variation of each pattern from the background [21], [27].
To account for different distributions of the k-mers, in [21] a
new statistic is defined and named Dj. Let

Aw = Aw - (’I’L —k+ 1) * Pw and Bu; = Bw - (n —k+ 1) * Pw
where p,, is the probability of w under the null model. Then
D} can be defined as follows:

A yB )
D; wH=w .
Z _ 1)y
et (n—k+1)p

This latter similarity measure responds to the need of
normalization of D,. Recently Goke et al. [14] proposed N,
a statistic based on word-neighborhood. It is closely related
with Dj, except that it counts words with at most one mis-
match and considers also the reverse-complement of words.
The N, statistic is in practice one of the best performing for
the detection CRMs [14].

All these statistics have been studied by Reinert et al. [21]
and Wan et al. [27] for the detection of regulatory sequences.
Both papers test the performance on synthetic and real data
sets. In particular, the pattern transfer model, introduced by
Reinert et al. [21], was used to simulate the exchange of
genetic material between two genomes. We describe this
model in Section 3 and propose a more realistic formulation.

Most of the works on sequence similarity use the word
distribution to study evolutionary relationships among dif-
ferent organisms [13], [22], [23]. Other works, instead, com-
pare advantages and disadvantages of alignment-free
methods [12], [29]. In [12], researchers have shown that the
use of k-mer frequencies can improve the construction of
phylogenetic trees traditionally based on a multiple-
sequence alignment, especially for distant related species.
The efficiency of alignment-free measures also allows the
reconstruction of phylogenies for whole genomes [8], [9],
[22]. Another application is the classification of protein
remotely related, which can be addressed with sophisti-
cated word counting procedures [10], [11]. Several other
applications can benefit from the use of alignment-free
methods [2]; for a comprehensive review we refer the reader
to [26].

In the context of alignment-free measures the selection of
the best resolution, the size k of words, is a non-trivial prob-
lem [22], [29], where the performance of every method is
tightly related with this parameter. For example, in [27],
using synthetic data, the best performance is achieved
when £ is equal to the length of the implanted patterns. In a
real scenario, where we do not know the length of the bio-
logical signal in sequences under examination, it may be
hard to choose the best resolution k. Moreover, in case of
CRMs, where multiple binding sites with different lengths
are present, a fixed value of k£ will never capture the statistic
of all binding sites. These observations motivate the use of
variable-length patterns for the estimation of similarity
between regulatory sequences. The result will be a parame-
ter-free alignment-free measure.

3 METHODS AND MATERIALS: Under, AND THE
PATTERN TRANSFER MODEL REVISED
In this section we describe our parameter-free alignment-

free similarity measure, called Under;, which is based on
two concepts: irredundancy and underlying positioning.
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Let us consider the space of all patterns, of all lengths,
that are shared by two sequences s; and sy, say 2. The
notion of irredundancy is meant to remove the redundant
patterns, i.e., those patterns that do not convey extra infor-
mation for the similarity measure. The second driving prin-
ciple is the fact that every position in the sequences
contributes a multiple number of times to the final score.
More precisely, in all scores presented in Section 2, every
position except the borders is part of exactly % different
k-mers. In the same way, repeats present in the sequences
might alter the occurrence profile of some patterns, making
them more likely to be irredundant. Here we want to limit
this phenomenon so that every position is part of at most
one “underlying” pattern and thus will be accounted just
one time. This will permit to correlate the nucleotides of s;
and s; with each other, as one would naturally think, main-
taining the information on possible translocations and
duplications of specific patterns at the same time.

In the following we address these two issues separately.
The goal is to build a similarity measure between the
sequences s; and s, using all exact patterns of all lengths,
3", that are shared between the two sequences.

3.1 Removing Redundant Patterns

The notion of irredundancy has been introduced in [4] and
later on modified for the problem of protein comparison
[10]. In this paper we consider this latter version, also called
irredundant common motifs, but restricted only to the
domain of exact patterns (i.e., without allowing mismatches
or gaps) in order to deal with large sets of enhancers and
large sequences.

It is well known that the total number of distinct patterns
of any length in a sequence of length n are ®(n?). Remark-
ably a notable family of fewer than 2n patterns exists such
that they are maximal in the host sequence, in the sense that
it is impossible to extend a word in this class by appending
one or more characters to it without losing some of its occur-
rences [3]. The linear size set of maximal patterns can be fur-
ther reduced to the set of irredundant patterns.

In [10], we extended the notion of irredundancy to the
case of pairwise sequence comparison, in order to avoid
overcounting common patterns that cover the same region
of a sequence. Indeed, one can easily show that most
sequences share an unusually large number of common pat-
terns that do not convey extra information about the input.
To keep the article self-contained, here we summarize the
basic facts already proved in [10]. If the occurrence of a pat-
tern completely overlaps with the occurrence of another
longer pattern, we say that the occurrence of the first pattern
is covered by the second one.

Definition 1 (Irredundant/Redundant Common Patterns).
A pattern w is irredundant if and only if at least an occur-
rence of w in sy or sy is not covered by other patterns. A pat-
tern that does not satisfy this condition is called a redundant
common pattern.

We denote the set of irredundant common patterns as
Ly, s,- Inloose terms, all redundant common patterns can be
deduced from patterns in Z, ,,, since they do not carry
more information than the set of irredundant common pat-
terns and therefore can be discarded.
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One can show that every irredundant common pattern w
is the result of some intersection of the two input sequences,
where each meet in this case corresponds to a particular a
set of patterns [10]. We observe again that Z,, ,, is a subset
of the well-known linear set of maximal common patterns;
therefore the number of irredundant common patterns is
bounded by |s| + |s2].

A simple algorithm that can discover all such patterns
(without gaps) can be found in [8]. It employs a generalized
suffix tree of the two sequences s; and s,. The construction
of the generalized suffix tree and the subsequent extraction
of the irredundant common patterns can be completed in
time and space linear in the size of sequences, by exploiting
well-known properties and implementations of suffix arrays
and matching statistics [16].

In summary, the notion of irredundancy is useful for
removing non-informative patterns, and thus for drastically
reducing the number of candidates to be analyzed to esti-
mate the sequence similarity between s; and s». Moreover, it
is worth mentioning that this notion can be efficiently com-
puted also for long sequences and large data sets [8], [24].

3.2 Selecting Underlying Patterns

A notable problem with alignment-free measures is that
they are biased by the presence of repetitive words in
genomes, with a major tradeoff between the number of
words they can encode and the resolution, or size, and
repetitiveness of these words along the sequences. For
example, mammalian genomes can have very long repeats
that contribute to overcounting the presence of some
k-mers. At the same time different k-mers with occurrences
shifted of just one or two positions with each other in s; can
easily match different regions of the other genome s,, lead-
ing to patterns that ambiguously represent the similarity of
sequences.

Following these simple ideas, when comparing large
genomes or large sets of genomic sequences, one would like
to avoid that repeats or patterns with low resolution may be
trivially overcounted a multiple number of times, mislead-
ing the final similarity score. To partially address this issue,
repeat regions are usually masked before computing the
similarity score [14]. Nevertheless, in this paper we take
into account both problems, repeats and possible low reso-
lution of patterns, in a simple and systematic manner with-
out discarding any information on sequences.

The basic idea behind our approach is that a position on
the sequences should contribute only once to the final simi-
larity. Again, traditionally alignment-free statistics fail to
comply with this simple rule. In fact, every position, apart
from the borders, belongs to % different k-mers and thus
contributes & times to the similarity. On the other hand
every irredundant common pattern has at least one of its
occurrences that is not covered by any other pattern. How-
ever, this occurrence might be partially covered by other
patterns that are perhaps longer and more significant, or
could be a repeat that makes the pattern more likely to be
the irredundant. For example, for large genomes of similar
size n we noticed a number of irredundant common pat-
terns very close to the actual size n of each genome, and this
fact can lead to account each position O(n?) times. Here we
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want every position to be covered by exactly one pattern so
that it will be accounted only once in the similarity score,
therefore correlating the nucleotides of s; and s; with each
other unambiguously, even in case of translocations and
duplications (which are usually not taken into account by
classic alignment methods).

In previous works on whole-genome comparison, to
solve this problem we used the notions of pattern priority
and of underlying pattern [8]. The pattern priority rule is
mainly based on the idea of selecting, for each position,
those patterns that represent the largest number of match-
ing sites between sequences, and thus that are more likely
to be conserved patterns. Since it might be the case that two
or more patterns with the same length overlap with each
other, we exploited the fact that genomic coordinates give a
total rank of all patterns to select just one “underlying " pat-
tern for each position, in a combinatorial fashion. In practice
the use of genomic coordinates proved to be valuable and
efficient in whole-genome comparison, as a universal way
to sort out patterns with a similar level of conservation.
Note that, in principle, a score based on the probability for a
pattern to appear over an entire genome would have been
preferable, but we found it not feasible to be applied,
because genomic regions can be characterized by highly dif-
ferent nucleotide profiles that bias the likelihood of appear-
ance of a pattern (for example, in highly repeating regions).

Nevertheless, in case of enhancer sequences we can actu-
ally infer a general nucleotide profile that does not signifi-
cantly vary among them. Therefore, it would be natural to
include a probabilistic score for each pattern in our priority
rule; we will see how to compute this score in the next sec-
tion. In the following we formally define the new pattern
priority rule and the underlying patterns.

Let us consider the set of irredundant common patterns
T, s, as input. Given two patterns w and w', we say that w
has priority over v/, denoted w —w/, if and only if either
|lw| > |[w|, or |w| = |v'| and w is less likely to appear in the
sequences than «', or w and w’ have the same length and
probability to appear, but the first occurrence of w appears
before the first occurrence of w'. Following the notion of pat-
tern priority, every pattern can be defined just by its length,
probability, and its starting positions in the sequences,
meaning that any set of patterns is totally ordered with
respect to the priority rule. We say that an occurrence [ of w
is tied to an occurrence !’ of another pattern w/, if these
occurrences  (partially) overlap to each other,
LI+ Jw = 1Nl T+ || —1]) # 0, and w'— w. Otherwise,
we say that [ is untied from I'.

Definition 2 (Underlying Patterns). A set of patterns

Uy, sy C Ly, s, is said to be the Underlying set of {si, s} if

and only if:

1. every pattern w in Uy, ,, called underlying pattern,
has at least one occurrence in both sequences that is
untied from all the untied occurrences of other patterns
inUs, s, \ w, and

2. there does not exist a pattern w € T, 5, \ Us, s, such
that w has at least two untied occurrences, one
per sequence, from all the untied occurrences of pat-
ternsin U, ,.

The objective of this definition is to select the most
important patterns in Z,, ,, for each location of the sequen-
ces, according to the pattern priority rule. If a pattern w is
selected, we filter out all occurrences of patterns with less
priority than w that lay on the untied locations of w, in a
simple combinatorial fashion.

Similarly to the underlying patterns presented in [8], it is
easy to see that the Underlying set exists and is unique for a
pair in input {s, so}. The complete procedure to discover
the set U, ,, can be found in [8]. Here below we give an
overview of the algorithm.

Underlying Pattern Extraction (Input: si, s;; Output:
Usy )

Compute the set of Irredundant common patterns T, s, .

Rank all patterns in I, ., using the pattern priority rule.

for Select the top pattern, w, from I, ,,: do
if Check in I if w has at least one untied occurrence per
sequence that is not covered by some other patterns already
inl, ,, then

Add wto U and update the location vector, I', in

51,5
which w appe&lzrs2 as untied.
else
Discard w.
end if
end for

The algorithm requires first to order the set of irredundant
common patterns by means of the pattern priority. The com-
plexity of sorting is in general O(llog!), where | = |s;| + |sa].
However, due to the properties of the pattern priority, this
step can be done in O(!) time using radix sort. An auxiliary
vector I, of length [, is used to represent all locations of s; and
s5. If a location i is covered by some pattern already in U, ,,
then I'[i] = false; otherwise, if the location is free, I'[i] = true.
For a pattern win 7, ,,, we can check whether its occurrences
are tied to other patterns by looking at the vector I'. If some
untied occurrences are found, then we can add the new
underlying pattern w to, ,,, and update the vector I" accord-
ingly using all the untied occurrences of w. In total the extrac-
tion of all underlying patterns, using this scheme, takes O((?)
time. A more advanced algorithm with a better complexity,
O(lloglloglogl) time and O(!) space, can be found in [8].

As a corollary, it can be shown that all untied occurrences
of the underlying patterns in i, ,, can be mapped into the
sequences s; and s, without overlaps. We will use precisely
these occurrences to compute a similarity measure in which
every position contributes only once.

3.3 Building the Under, Similarity Measure

Next, we want to compute a similarity measure based on
the underlying patterns in U, ,,. At first we can note that
the set of underlying patterns Uy, ,, is not symmetric, in gen-
eral U, s, # U, - Thus, in order to build a symmetric mea-
sure, we need to consider both sets. Our similarity is
inspired by the Average Common Subword approach
(ACS) [24], where the scores of common patterns found are
averaged over the length of sequences. Here we follow the
same approach, but, instead of counting all common pat-
terns, we use just the untied occurrences of the underlying
patterns, which by definition do not overlap [8].
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Then, in ACS the contribution of each position is given
by the length of the pattern covering that position. In our
approach we use instead the ratio of the number of occur-
rences for an underlying pattern w, and the expected num-
ber of occurrences for that pattern. Let us define occ,, as the
number of occurrences of w, and untied,lw as the number of
untied occurrences of w in s;. First we compute the score:

ocCy

ZweUﬁ . |w| * untied!, * Py

Score(sy, 89) =
|1

Recalling that the untied occurrences do not overlap
with each other, we notice that the term |w|* untied!
counts the positions where w appears without overlap-
ping any other pattern. For each such position we sum the
score E‘[’;’zg;‘y], where Elocc,] is the expected number of
occurrences. Note that the expectation of this ratio is
exactly 1. This sum is then averaged over the length of the
first sequence under examination, s;. This score is large
when the two sequences are similar, therefore we take its
inverse. Then, since the total number of occurrences of an
underlying pattern w present in s; is expected to logarith-
mically increase with the length of s,, we consider the
measure logy(|s2|)/Score (s1, s2), where a base-4 logarithm
is used to represent the four DNA bases.

To center the formula, such that it goes to zero when
$1 = $9, we subtract the term log, |s1]. If s; = sy there will be
just one underlying pattern that is equal to the sequence
itself. In this case, Score(sy, s1) will be 1 and the term log,|s1 |
makes sure that Undery(s1, s1) = 0. These observations are
implemented in the general formula of Undery(sq, s2):

S 1
Unders(s1,82) = 0|52]

_ ol
Score(s1, s9) ogfs1l;

Unders(s1, 55) — Unders(s1, s2) ;— Unders(sa, s1) .

Finally, to correct the asymmetry, our similarity measure
called Under, is the average of the two statistics
Unders(sy, s2) and Undery(ss, $1).

An important aspect in this formula is the computation
of the expected number of occurrences of a pattern w. A
Bernoulli model, where each symbol is independent from
each other, is usually inappropriate for genomic sequences
that might be rich, for example, of CpG dinucleotides. A
Markov model usually outperforms the Bernoulli model on
biological sequences. In our case the length of CRMs is rela-
tively short and thus, to avoid overfitting, we will rely on a
first order Markov model as in [14]. In summary, the expecta-
tion is computed as Efocc,] = p,(l — |w| + 1), where p,, is the
probability of w using the Markov model and I = |s;| + |s2].
In our experiments we estimate the background probabilities
for each pair of sequences separately. For a fair comparison
also the expectations in Dj, Dj, N, will use the same back-
ground model. These latter statistics, with the first order
Markov model, are implemented in the N, package [14].

Finally, we extend our approach to account for untied
occurrences that are present in the reverse, complement,
and reverse-complement of each sequence, in order to simu-
late the DNA strand and the evolution of sequences. Every
underlying pattern can thus match the sequences s; and s,
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in different ways, but a location in the sequences will be
covered at most by an untied occurrence, independently of
the matching strand. For more details about this extension,
we refer to [8].

3.4 The Pattern Transfer Model Revised

Reinert et al. [21] proposed two simulation models: the com-
mon pattern model, and the pattern transfer model. In the com-
mon pattern problem a pattern is implanted into two
sequences at random positions. In the pattern transfer
model, random fragments of the first sequence are copied
into the second.

The latter model simulates the exchange of genetic mate-
rial, e.g., horizontal gene transfer, and can model sequences
from distant related organisms. This model is of particular
interest for the analysis of CRMs. Let us consider two input
strings S = $15283...5, and W = wywyws ... w,. In the pat-
tern transfer model the string S is associated with a set of
Bernoulli random variables 7;, Zy..., Z, ;1 Where
P(Z; =1) = X Every time Z;, = 1, a word of length [ is trans-
ferred from s;8;41...8;47 1 to wjw;yq ... w;_1. If a word is
transferred from position ¢ of S to position i of W, we ignore
the values of Z; for i < j <1+ [ — 1and the process restarts
from position i + I, therefore we do not allow overlaps. We
say that the resulting sequences W and S are related accord-
ing to the pattern transfer model. This model has been used
for different studies, see for example [21], [27].

There are two basic observations that we can make
regarding the pattern transfer model. First the model
always transfers patterns of fixed-length [. In general the
binding sites of a CRMs can have different lengths, but also
their degrees of preservation can be different, thus the use
of a fixed-length model does not often fit CRMs. Moreover,
since almost all alignment-free methods use words of fixed-
length k, the performance of these methods is tightly related
with the choice of k and its relation with /. A second obser-
vation is the fact that often binding sites in similar CRMs
appear with a different orientation. More precisely the same
binding site can appear in another regulatory sequence as
reverse, complement or as reverse-complement. To accom-
modate these observations we formulate the pattern transfer
model revised as follows.

Similarly to the original model, if Z; = 1, a word is trans-
ferred from position 7 of .S to position i of W. However, this
word will be of variable size, between [ to [ + §. The length
of the word to be transferred is chosen uniformly at ran-
dom, i.e., with probability 1/8. This word is then copied
from position i of W as it is, or as reverse, complement, or
reverse-complement again with equal probability. The
resulting string W is now related to S through the pattern
transfer model revised. As we will see later in Section 4, in
general the detection of correlations between sequences
related to each other through the pattern transfer model
revised is harder than with the original model.

4 EXPERIMENTAL RESULTS ON SYNTHETIC AND
REAL DATA
To assess the performance of Under; and compare it to the

other statistics presented above, we devised a series of tests
on real and simulated data.
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Fig. 1. PPV/accuracy scores for various methods on the original pattern transfer model.

4.1 Pattern Transfer on Simulated Data

We follow the experimental setup of [18] and of [20]. Let us
first generate a set of random sequences using an i.i.d. dis-
tribution, as background model (or negative set). We
implant patterns using the pattern transfer model into a
copy of the same set of sequences to simulate CRMs; this
will be our positive set. We then compute the pairwise
scores between all pairs in the negative set, and between all
pairs in the positive set. For all methods, we assess if the
pairs from the positive set score higher than the pairs from
the negative set. This is done by sorting all pairwise scores
in one combined list. We consider as positive predictive
value (PPV) the percentage of pairs from the positive set
that are in the top half of this list. This setup was proposed
in [18] and, in this case, PPV, or precision, is equivalent to
both sensitivity and accuracy. A score of 1 means a perfect
separation between negative and positive sets, while values
close to 0.5 imply no statistical power.

In our experiments we generate the random sequences
using two different i.i.d. models. In the first model all sym-
bols have the same probability p4 = pc = pe = pr = 1/4,
whereas in the second model we simulate GC-rich sequen-
ces with py = pr =1/6 and pc = pg = 1/3. We assess the
performance of the methods presented in Section 2 for two
values of A, 0.01 and 0.001, while varying the length of the
input sequences. All results show the average scores over
20 simulations, every time drawing 50 new random
sequences.

We start following the original pattern transfer model, by
inserting words of length 5, similarly to [20]. With this
experimental setup it has been shown that all others statis-
tics give the best performance with k£ = 5. In all our experi-
ments we use the most performing setup also for N, which
is using k-mers (again k= 5) with at most one mismatch
and considering the reverse-complement. All statistics are
computed using the package ALF from the SeqAn library
(http:/ /www.seqan.de).

Fig. 1 presents the performance of all statistics when
using the original pattern transfer model, a background
with equally probable symbols, and the two tested values of

A. In general, the performance of all methods increases with
the length of the sequences, where the number of implanted
patterns also increases. For large values of A\ the number of
implanted patterns is high enough to get all methods per-
forming very well. With A = 0.001 the instance becomes dif-
ficult and all the other methods need longer sequences to
reach a significant score, usually no greater than 0.75,
whereas Under; classifies correctly the two sets of sequences
with an accuracy of 0.9 even when the length of sequences is
just 4,000 bp.

By applying the same experimental setup, we test all sim-
ilarity measures using the pattern transfer model revised,
with the length of implanted patterns in the range [4-6].
Results are presented in Fig. 2. We can observe that the per-
formance of all methods degrades and, as we expected,
with this revised version it is more difficult to detect the
implanted biological signals. For all methods except Under;
the performance reduction is clear, especially for A = 0.01.
Similarly with the previous figure, the behavior of all other
measures is almost indistinguishable.

In Fig. 3 the setup is similar to Fig. 2 except that the back-
ground sequences are generated with the proposed GC-rich
model. Our method, Under;, remains the best performing,
whereas now we can observe more clearly the differences
between the other measures. As expected D, is the worse,
as it does not correct for sequence biases. The performance
of Dj slightly degrades, while N, and Dj, which are very
similar measures, take advantage of the nucleotide
distribution.

4.2 Pattern Transfer on Drosophila Genome

In the above simulations we study the power of all statistics
to detect relationships between random sequences under
the pattern transfer model revised for different settings.
However, random sequences are not a good background
model for genomes. Here we test the ability to cluster
related sequences when the background is a real genomic
sequence. We follow the experimental setup of [20] and use
the same real genomic data as a background. We first down-
load all the intergenic sequences of the Drosophila genome
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Fig. 2. PPV/accuracy scores for various similarity measures after applying the pattern transfer model revised.

from FlyBase (http://flybase.org, dmel-all-intergenic-r5.49.
fasta). Then, we pick at random 50 sequences of the same
length as a negative set, and create the positive set using the
pattern transfer model revised as above. We repeat this pro-
cess 20 times and report the average scores in Fig. 4 for all
statistics, for different lengths in background, and different
values of \.

With a real background we can observe that all statistics
are no longer monotonic. In the simplest instance, with
A = 0.01, the evolutionary signal can be easily recovered by
Ny and Undery, while in general the relative performance of
all statistics does not mutate with respect to the previous
experiment. When the evolutionary signal becomes more
subtle, A =0.001, only Under; can detect it, whereas all
other statistics have no discrimination power (accuracy
close to 0.5).

4.3 The Effect of Evolutionary Time after Pattern
Transfer with Real Data

In the above simulations we studied the ability of the statis-

tics to detect related sequences immediately after the
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pattern transfer model revised. Although this model might
mimic the exchange of genetic material, in many real situa-
tions the two sequences continue to evolve afterward. Thus,
it is of interest to understand how evolution affects the per-
formance of the different statistics. To devise a suitable test
we use as input Drosophila background sequences with
length of 2,000 taken from the previous simulation and
A =0.01. We then evolve the sequences using the HKY
model presented in [17], with ratio equal to 2.0. We write
0 = tn, where t is the time and 7 is the rate of mutation. In
our experiments we consider the average human mutation
rate of n = 107°. As a result, the evolutionary time depends
now only on 6. We took as input the Drosophila sequences
after the pattern transfer and then evolve this set for various
values of & = 0.01 — 0.1. In Fig. 5 we report the performance
of the different methods with respect to the evolutionary
time. As expected, the power of all methods decreases over
time as a function of §. We continue to see that the relative
performance of all methods remains unchanged. When
t =10 generations, which implies 6 = 0.01, the power of
t =107

Under, remains close to 1; however, after
1
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Fig. 3. PPV/accuracy scores for various methods after applying the pattern transfer model revised with a GC-rich background.
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Fig. 4. PPV/accuracy scores for various methods on the pattern transfer model revised using real DNA sequences as background (Drosophila).

generations and 6 = 0.1 it goes down to 0.6, where all others
statistics have already lost their ability to discriminate lon-
ger before that time.

4.4 Comparison of Mouse Regulatory Sequences
The above simulations deal with artificial CRMs from unre-
lated sequences, in this section we use real ChIP-seq data to
discriminate in vivo identified enhancers. Tissue-specific
enhancers in mouse embryos have been discovered by Visel
et al. [25] and Blow et al. [6]. We use enhancers active in
forebrain, midbrain, limb, and heart as positive set (as in
[14]). To correct for length differences, we select those
sequences with length of about 1, 000 bases.

In a first test, for the negative set we randomly sam-
pled sequences of the same length from the mouse
genome, and compute all pairwise scores and the accu-
racy as above. We maintain the parameters of previous
experiments to have a consistent and comparable setup.
The results are presented in Table 1. Again, the results
are averaged over 20 runs, where in every run we select

=4=Under2
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—ie=—D22
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Fig. 5. PPV/accuracy scores for various methods on the pattern transfer
model revised using real DNA sequences as background, and evolving
the sequences.

50 sequences from both sets. Across all tissues, Under;
gives the best results, demonstrating that it is the most
suitable to detect tissue-specific activities of regulatory
sequences. The results confirm the relative power of the
other statistics. In particular, with this real data set we
can observe that IV, performs slightly better than D}, con-
firming that the use of reverse-complement, as imple-
mented in Ny, plays an important role.

The previous test indicates that tissue-specific
enhancers can have a similar word content. However, the
comparison with random genomic sequences can be
biased by the technology, e.g. when it more likely extracts
sequences with high or similar GC-content. To avoid this
bias introduced by the technology, we also compare dif-
ferent ChIP-seq sequences between each other. This is a
much more challenging test, that can be used by biolo-
gists to select enhancers that drive a similar expression
pattern. We use as positive set the enhancers active in
one tissue, and as negative set the enhancers active in all
others tissues. Table 2 reports the results of this test.
Although the accuracy decreases compared to Table 2,
these later experiments confirm that similar tissue-specific
enhancers have a higher sequence similarity, and thus
they can be detected with alignment-free methods. In this
difficult test Undery; obtains an average accuracy of 0.7,
while the advantage with respect to all others methods
remains substantial, further proving to be a valuable sta-
tistic for the identification and analysis of regulatory
sequences.

TABLE 1
Comparison of ChlP-seq Data of Mouse Tissue-Specific
Enhancers versus Random Mouse Genomic Sequences

Tissue U2 N: 2 D; D)Qk Dg
ForeBrain | 0.85 | 0.78 | 0.65 | 0.77 0.59
MidBrain | 0.81 | 0.76 | 0.65 | 0.74 | 0.55
Heart 0.75 | 0.70 | 0.62 | 0.69 0.51
Limb 0.80 | 0.71 | 0.63 | 0.72 | 0.49
Average 0.80 | 0.74 | 0.63 | 0.73 | 0.535

Values in the table represent the accuracy of each method for different
tissues. The best scores are in bold.
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TABLE 2
Comparison of ChlP-Seq Data of Mouse Tissue-Specific
Enhancers versus Others Tissue-Specific Enhancers

Tissue Us No D3 D3 Do

ForeBrain | 0.73 | 0.66 | 0.53 | 0.65 | 0.51
MidBrain | 0.69 | 0.64 | 0.55 | 0.63 | 0.45
Heart 0.67 | 059 | 0.54 | 0.58 | 0.44
Limb 0.71 0.6 0.54 0.6 | 047
Average 0.70 | 0.62 | 0.54 | 0.61 | 047

Values in the table represent the accuracy of each method for different
tissues. The best scores are in bold.

5 CONCLUSION AND FUTURE WORK

In this paper we studied the use of alignment-free measures
to detect functional and/or evolutionary similarities among
regulatory sequences. We introduced a parameter-free
alignment-free method called Under, that is designed
around the use of variable-length words combined with
specific statistical and syntactical properties. A new model
to simulate the exchange of genetic material has been intro-
duced and studied. To evaluate the performance of several
alignment-free methods, we devised an extensive series of
tests on both synthetic and real data. In almost all simula-
tions our method Under; outperforms all other statistics.
The performance gain becomes more evident when the pat-
tern transfer model revised is applied, or when the evolu-
tionary signal becomes more subtle. Importantly, Under; is
also able to detect similarities between in vivo identified
enhancer sequences, e.g., of mouse. This will allow to verify
and study the architecture of regulatory elements. As
shown in the article, a similarity measure based on variable-
length word count can successfully detect tissue-specific
enhancers. This suggests that different binding site contents,
captured by variable-length words, may play an important
role to the tissue-specificity of enhancers. This will help to
understand sequence-dependent code within CRMs, which
is responsible for the large diversity of cell types. As a
future direction of investigation, we will consider the use of
Under; for the assembly-free comparison of genomes based
only on short reads.
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